top of page

 

Related research

Fine motor control decline

A.[1]

Paired Associative Stimulus

[2], [3], [4]

Stroke

[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47]

TBI

.[48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65]

Brain state

[66], [67], [68], [69], [70], [71], [72], [73]

Physiologic sigh

[74], [75]

Static magnetic stim.

[76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101], [102]

[1] B. P. Johnson and K. P. Westlake, “Chronic Poststroke Deficits in Gross and Fine Motor Control of the Ipsilesional Upper Limb,” Am J Phys

Med Rehabil, vol. 100, no. 4, pp. 345–348, 2021, doi: 10.1097/PHM.0000000000001569.

[2] J. A. Palmer, S. L. Wolf, and M. R. Borich, “Paired associative stimulation modulates corticomotor excitability in chronic stroke: A preliminary

investigation.,” Restor Neurol Neurosci, vol. 36, no. 2, pp. 183–194, 2018, doi: 10.3233/RNN-170785.

[3] L. Minkova et al., “Determinants of inter-individual variability in corticomotor excitability induced by paired associative stimulation,” Front

Neurosci, vol. 13, no. JUL, pp. 1–6, 2019, doi: 10.3389/fnins.2019.00841.

[4] G. Alder, N. Signal, S. Olsenv, and D. Taylor, “A systematic review of paired associative stimulation (PAS) to modulate lower limb corticomotor

excitability: Implications for stimulation parameter selection and experimental design,” Front Neurosci, vol. 13, no. AUG, pp. 1–37, 2019, doi:

10.3389/fnins.2019.00895.

[5] J. K. Ferris, J. L. Neva, B. A. Francisco, and L. A. Boyd, “Bilateral Motor Cortex Plasticity in Individuals With Chronic Stroke, Induced by

Paired Associative Stimulation,” Neurorehabil Neural Repair, vol. 32, no. 8, pp. 671–681, 2018, doi: 10.1177/1545968318785043.

[6] G. Romain et al., “Long-term relative survival after stroke: The dijon stroke registry,” Neuroepidemiology, vol. 11, pp. 1–18, 2019, doi:

10.1159/000505160.

[7] F. C. Hummel and L. G. Cohen, “Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?,” Lancet

Neurology, vol. 5, no. 8, pp. 708–712, 2006, doi: 10.1016/S1474-4422(06)70525-7.

[8] M. R. M. Rodrigues, M. Slimovitch, G. Chilingaryan, and M. F. Levin, “Does the Finger-to-Nose Test measure upper limb coordination in

chronic stroke?,” J Neuroeng Rehabil, vol. 14, no. 1, pp. 1–11, 2017, doi: 10.1186/s12984-016-0213-y.

[9] E. Tavernese et al., “Segmental muscle vibration improves reaching movement in patients with chronic stroke. A randomized controlled trial,”

2013. doi: 10.3233/NRE-130881.

[10] E. C. Wonsetler and M. G. Bowden, “A systematic review of mechanisms of gait speed change post-stroke. part 1: Spatiotemporal parameters

and asymmetry ratios,” Top Stroke Rehabil, vol. 24, no. 6, pp. 435–446, 2017, doi: 10.1080/10749357.2017.1285746.

[11] C. S. Kase, P. A. Wolf, M. Kelly-Hayes, W. B. Kannel, A. Beiser, and R. B. D’Agostino, “Intellectual decline after stroke: The Framingham

Study,” Stroke, vol. 29, no. 4, pp. 805–812, 1998, doi: 10.1161/01.STR.29.4.805.

[12] P. Langhorne, F. Coupar, and A. Pollock, “Motor recovery after stroke: a systematic review,” Lancet Neurol, vol. 8, no. 8, pp. 741–754, 2009,

doi: 10.1016/S1474-4422(09)70150-4.

[13] C. Grefkes and G. R. Fink, “Recovery from stroke: current concepts and future perspectives,” Neurol Res Pract, vol. 2, no. 1, 2020, doi:

10.1186/s42466-020-00060-6.

[14] P. B. Gorelick, “The global burden of stroke: persistent and disabling,” Lancet Neurol, vol. 18, no. 5, pp. 417–418, 2019, doi: 10.1016/S1474-

4422(19)30030-4.

[15] P. Ferdinand and C. Roffe, “Hypoxia after stroke: A review of experimental and clinical evidence,” Exp Transl Stroke Med, vol. 8, no. 1, pp. 1–8,

2016, doi: 10.1186/s13231-016-0023-0.

[16] M. A. Moskowitz, E. H. Lo, and C. Iadecola, “The science of stroke: Mechanisms in search of treatments,” Neuron, vol. 68, no. 1, p. 161, 2010,

doi: 10.1016/j.neuron.2010.08.019.

[17] N. Takeuchi and S. I. Izumi, “Maladaptive plasticity for motor recovery after stroke: Mechanisms and approaches,” Neural Plast, vol. 2012,

2012, doi: 10.1155/2012/359728.

[18] H. T. Hendricks, J. Van Limbeek, A. C. Geurts, and M. J. Zwarts, “Motor recovery after stroke: A systematic review of the literature,” Arch Phys

Med Rehabil, vol. 83, no. 11, pp. 1629–1637, 2002, doi: 10.1053/apmr.2002.35473.

[19] L. V. Bradnam, C. M. Stinear, and W. D. Byblow, “Ipsilateral motor pathways after stroke: Implications for noninvasive brain stimulation,”

Front Hum Neurosci, vol. 7, no. APR 2013, pp. 1–8, 2013, doi: 10.3389/fnhum.2013.00184.

[20] G. Di Pino et al., “Modulation of brain plasticity in stroke: A novel model for neurorehabilitation,” Nat Rev Neurol, vol. 10, no. 10, pp. 597–608,

2014, doi: 10.1038/nrneurol.2014.162.

[21] “Continual long-term physiotherapy after stroke: A health technology assessment,” Ont Health Technol Assess Ser, vol. 20, no. 7, pp. 1–70, 2020.

[22] N. Y. H. Yang, D. Zhou, R. C. K. Chung, C. W. P. Li-Tsang, and K. N. K. Fong, “Rehabilitation interventions for unilateral neglect after stroke: A systematic review from 1997 through 2012,” Front Hum Neurosci, no. APR 2013, pp. 2–14, 2013, doi: 10.3389/fnhum.2013.00187.

[23] N. Okabe, K. Narita, and O. Miyamoto, “Axonal remodeling in the corticospinal tract after stroke: How does rehabilitative training modulate it?,” Neural Regen Res, vol. 12, no. 2, pp. 185–192, 2017, doi: 10.4103/1673-5374.200792.

[24] D. A. Nowak, C. Grefkes, M. Ameli, and G. R. Fink, “Interhemispheric competition after stroke: Brain stimulation to enhance recovery of

function of the affected hand,” Neurorehabil Neural Repair, vol. 23, no. 7, pp. 641–656, 2009, doi: 10.1177/1545968309336661.

[25] J. Kim et al., “Global Stroke Statistics 2019,” International Journal of Stroke, vol. 15, no. 8, pp. 819–838, 2020, doi:

10.1177/1747493020909545.

[26] U. Kischka and D. T. Wade, “Rehabilitation after stroke,” Handbook of Cerebrovascular Diseases, Second Edition, Revised and Expanded, pp. 231–241, 2004, doi: 10.1093/med/9780199641208.003.0021.

[27] R. L. Harvey, “Motor recovery after stroke,” 2003. doi: 10.1016/S1047-9651(02)00081-5.

[28] S. M. Hatem et al., “Rehabilitation of motor function after stroke: A multiple systematic review focused on techniques to stimulate upper extremity recovery,” Front Hum Neurosci, vol. 10, no. SEP2016, pp. 1–42, 2016, doi: 10.3389/fnhum.2016.00442.

[29] S. C. Cramer, “Treatments to promote neural repair after stroke,” J Stroke, vol. 20, no. 1, pp. 57–70, 2018, doi: 10.5853/jos.2017.02796.

[30] X. Chen, P. Xie, Y. Zhang, Y. Chen, S. Cheng, and L. Zhang, “Abnormal functional corticomuscular coupling after stroke,” Neuroimage Clin, vol. 19, no. April, pp. 147–159, 2018, doi: 10.1016/j.nicl.2018.04.004.

[31] B. R. Webster, P. A. Celnik, and L. G. Cohen, “Noninvasive Brain Stimulation in Stroke Rehabilitation,” NeuroRx, vol. 3, no. 4, pp. 474–481,

2006, doi: 10.1016/j.nurx.2006.07.008.

[32] C. Costantino, F. Petraglia, L. L. Sabetta, and R. Giumelli, “Effects of Single or Multiple Sessions of Whole Body Vibration in Stroke: Is There Any Evidence to Support the Clinical Use in Rehabilitation?,” Rehabil Res Pract, vol. 2018, pp. 1–17, 2018, doi: 10.1155/2018/8491859.

[33] L. A. Simpson, W. C. Miller, and J. J. Eng, “Effect of stroke on fall rate, location and predictors: A prospective comparison of older adults with and without stroke,” PLoS One, vol. 6, no. 4, pp. 1–8, 2011, doi: 10.1371/journal.pone.0019431.

[34] N. Mrachacz-Kersting et al., “Brain state–dependent stimulation boosts functional recovery following stroke,” Ann Neurol, vol. 85, no. 1, pp. 84–95, 2019, doi: 10.1002/ana.25375.

[35] N. Bolognini, C. Russo, and D. J. Edwards, “The sensory side of post-stroke motor rehabilitation,” Restor Neurol Neurosci, vol. 34, no. 4, pp. 571–586, 2016, doi: 10.3233/RNN-150606.

[36] S. Ovadia-Caro, A. A. Khalil, B. Sehm, A. Villringer, V. V. Nikulin, and M. Nazarova, “Predicting the response to noninvasive brain stimulation in stroke,” Front Neurol, vol. 10, no. APR, pp. 1–14, 2019, doi: 10.3389/fneur.2019.00302.

[37] S. Li, G. E. Francisco, and P. Zhou, “Post-stroke hemiplegic gait: New perspective and insights,” Front Physiol, vol. 9, no. AUG, pp. 1–14, 2018, doi: 10.3389/fphys.2018.01021.

[38] D. L. Rimmele et al., “Association of extrapyramidal tracts’ integrity with performance in fine motor skills after stroke,” Stroke, vol. 49, no. 12, pp. 2928–2932, 2018, doi: 10.1161/STROKEAHA.118.022706.

[39] T. C. Harrison, G. Silasi, J. D. Boyd, and T. H. Murphy, “Displacement of sensory maps and disorganization of motor cortex after targeted stroke in mice,” Stroke, vol. 44, no. 8, pp. 2300–2306, 2013, doi:10.1161/STROKEAHA.113.001272.

[40] S. K. Lui and M. H. Nguyen, “Elderly Stroke Rehabilitation: Overcoming the Complications and Its Associated Challenges,” Curr Gerontol Geriatr Res, vol. 2018, 2018, doi: 10.1155/2018/9853837.

[41] C. M. Stinear, “Stroke rehabilitation research needs to be different to make a difference,” F1000Res, vol. 5, p. 10.12688/f1000research.8722.1. eCollection 2016, 2016.

[42] P. Padmanabhan, K. S. Rao, S. Gulhar, K. M. Cherry-Allen, K. A. Leech, and R. T. Roemmich, “Persons post-stroke improve step length symmetry by walking asymmetrically,” J Neuroeng Rehabil, vol. 17, no. 1, pp. 1–21, 2020, doi: 10.1186/s12984-020-00732-z.

[43] L. Pellegrino, M. Coscia, P. Giannoni, L. Marinelli, and M. Casadio, “Stroke impairs the control of isometric forces and muscle activations in the ipsilesional arm,” Sci Rep, vol. 11, no. 1, pp. 1–18, 2021, doi: 10.1038/s41598-021-96329-0.

[44] N. M. Kitchen et al., “The complementary dominance hypothesis: a model for remediating the ‘good’ hand in stroke survivors,” Journal of Physiology, vol. 603, no. 3, pp. 663–683, 2025, doi: 10.1113/JP285561.

[45] C. Alia et al., “Neuroplastic changes following brain ischemia and their contribution to stroke recovery: Novel approaches in neurorehabilitation,” Front Cell Neurosci, vol. 11, pp. 1–29, 2017, doi: 10.3389/fncel.2017.00076.

[46] L. Hak, H. Houdijk, P. Van Der Wurff, M. R. Prins, P. J. Beek, and J. H. Van Dieën, “Stride frequency and length adjustment in post-stroke individuals: Influence on the margins of stability,” J Rehabil Med, vol. 47, no. 2, pp. 126–132, 2015, doi: 10.2340/16501977-1903.

[47] F. Qi, M. A. Nitsche, X. Ren, D. Wang, and L. Wang, “Top-down and bottom-up stimulation techniques combined with action observation treatment in stroke rehabilitation: a perspective,” Front Neurol, vol. 14, no. July, pp. 1–11, 2023, doi: 10.3389/fneur.2023.1156987.

[48] C. L. Mayer, B. R. Huber, and E. Peskind, “Traumatic brain injury, neuroinflammation, and post-traumatic headaches,” Headache, vol. 53, no. 9, pp. 1523–1530, 2013, doi: 10.1111/head.12173.

[49] J. H. Olver, J. L. Ponsford, and C. A. Curran, “Outcome following traumatic brain injury: A comparison between 2 and 5 years after injury,” Brain Inj, vol. 10, no. 11, pp. 841–848, 1996, doi: 10.1080/026990596123945.

[50] M. Saltychev, M. Eskola, O. Tenovuo, and K. Laimi, “Return to work after traumatic brain injury: Systematic review,” Brain Inj, vol. 27, no. 13–14, pp. 1516–1527, 2013, doi: 10.3109/02699052.2013.831131.

[51] L. M. Shulman, “Emotional Traumatic Brain Injury,” Cognitive and Behavioral Neurology, vol. 33, no. 4, pp. 301–303, 2020, doi: 10.1097/WNN.0000000000000243.

[52] E. Park, J. D. Bell, and A. J. Baker, “Traumatic brain injury: Can the consequences be stopped?,” Cmaj, vol. 178, no. 9, pp. 1163–1170, 2008, doi: 10.1503/cmaj.080282.

[53] A. A. B. Jamjoom, J. Rhodes, P. J. D. Andrews, and S. G. N. Grant, “The synapse in traumatic brain injury,” Brain, vol. 144, no. 1, pp. 18–31, 2021, doi: 10.1093/brain/awaa321.

[54] L. Avellone and P. Wehman, “Return to work following traumatic brain injury,” Brain Injury Medicine, Third Edition: Principles and Practice, vol. 29, no. 17, pp. 1268–1276, 2021, doi: 10.1891/9780826143051.0083.

[55] J. L. Ponsford et al., “Longitudinal follow-up of patients with traumatic brain injury: Outcome at two, five, and ten years post-injury,” J Neurotrauma, vol. 31, no. 1, pp. 64–77, 2014, doi: 10.1089/neu.2013.2997.

[56] N. Castor and F. El Massioui, “Traumatic brain injury and stroke: does recovery differ?,” Brain Inj, vol. 32, no. 13–14, pp. 1803–1810, 2018, doi: 10.1080/02699052.2018.1508748.

[57] D. Esterov and B. D. Greenwald, “Autonomic dysfunction after mild traumatic brain injury,” Brain Sci, vol. 7, no. 8, pp. 1–8, 2017, doi: 10.3390/brainsci7080100.

[58] N. S. N. Graham and D. J. Sharp, “Understanding neurodegeneration after traumatic brain injury: From mechanisms to clinical trials in dementia,” J Neurol Neurosurg Psychiatry, vol. 90, no. 11, pp. 1221–1233, 2019, doi: 10.1136/jnnp-2017-317557.

[59] S. Fordington and M. Manford, “A review of seizures and epilepsy following traumatic brain injury,” J Neurol, vol. 267, no. 10, pp. 3105–3111, 2020, doi: 10.1007/s00415-020-09926-w.

[60] D. W. Simon, M. J. McGeachy, H. Baylr, R. S. B. Clark, D. J. Loane, and P. M. Kochanek, “The far-reaching scope of neuroinflammation after traumatic brain injury,” Nat Rev Neurol, vol. 13, no. 3, pp. 171–191, 2017, doi: 10.1038/nrneurol.2017.13.

[61] M. Hunfalvay et al., “Vertical smooth pursuit as a diagnostic marker of traumatic brain injury,” Concussion, vol. 5, no. 1, pp. 1–12, 2020, doi: 10.2217/cnc-2019-0013.

[62] N. M. Bajwa, C. Kesavan, and S. Mohan, “Long-term consequences of Traumatic brain injury in bone metabolism,” Front Neurol, vol. 9, no. MAR, pp. 1–9, 2018, doi: 10.3389/fneur.2018.00115.

[63] V. J. Sydnor et al., “Mild traumatic brain injury impacts associations between limbic system microstructure and post-traumatic stress disorder symptomatology,” Neuroimage Clin, vol. 26, no. January, 2020, doi: 10.1016/j.nicl.2020.102190.

[64] C. Scaratti, M. Leonardi, D. Sattin, S. Schiavolin, M. Willems, and A. Raggi, “Work-related difficulties in patients with traumatic brain injury: a systematic review on predictors and associated factors,” Disabil Rehabil, vol. 39, no. 9, pp. 847–855, 2017, doi: 10.3109/09638288.2016.1162854.

[65] C. Arbour, Y. Bouferguene, R. Beauregard, G. Lavigne, and A. Herrero Babiloni, “Update on the prevalence of persistent post-traumatic headache in adult civilian traumatic brain injury: Protocol for a systematic review and meta-analysis,” BMJ Open, vol. 10, no. 1, pp. 1–6, 2020, doi: 10.1136/bmjopen-2019-032706.

[66] T. O. Bergmann, “Brain state-dependent brain stimulation,” Front Psychol, vol. 9, no. OCT, pp. 1–4, 2018, doi: 10.3389/fpsyg.2018.02108.

[67] J. Silvanto, N. Muggleton, and V. Walsh, “State-dependency in brain stimulation studies of perception and cognition,” Trends Cogn Sci, vol. 12, no. 12, pp. 447–454, 2008, doi: 10.1016/j.tics.2008.09.004.

[68] S. Hanslmayr and F. Roux, “Human Memory: Brain-State-Dependent Effects of Stimulation,” Current Biology, vol. 27, no. 10, pp. R385–R387, 2017, doi: 10.1016/j.cub.2017.03.079.

[69] A. Gharabaghi et al., “Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: Enhancing motor cortex excitability for neurorehabilitation,” Front Hum Neurosci, vol. 8, no. MAR, 2014, doi: 10.3389/fnhum.2014.00122.

[70] U. Ziemann, D. Desideri, P. Belardinelli, and C. Zrenner, “Brain-State Dependent Stimulation in Human Motor Cortex for Plasticity Induction Using EEG-TMS,” Biosystems and Biorobotics, vol. 21, pp. 1057–1060, 2019, doi: 10.1007/978-3-030-01845-0_211.

[71] D. Kraus, G. Naros, R. Guggenberger, M. T. Leão, U. Ziemann, and A. Gharabaghi, “Recruitment of additional corticospinal pathways in the human brain with state-dependent paired associative stimulation,” Journal of Neuroscience, vol. 38, no. 6, pp. 1396–1407, 2018, doi: 10.1523/JNEUROSCI.2893-17.2017.

[72] N. Schaworonkow, J. Triesch, U. Ziemann, and C. Zrenner, “EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities,” Brain Stimul, vol. 12, no. 1, pp. 110–118, 2019, doi: 10.1016/j.brs.2018.09.009.

[73] J. C. Peters, J. Reithler, T. A. de Graaf, T. Schuhmann, R. Goebel, and A. T. Sack, “Concurrent human TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-subcortical network activity,” Commun Biol, vol. 3, no. 1, pp. 1–11, 2020, doi: 10.1038/s42003-020-0764-0.

[74] E. Vlemincx, I. Van Diest, and O. Van den Bergh, “A sigh of relief or a sigh to relieve: The psychological and physiological relief effect of deep breaths,” Physiol Behav, vol. 165, no. Cdc, pp. 127–135, 2016, doi: 10.1016/j.physbeh.2016.07.004.

[75] E. Vlemincx, J. L. Abelson, P. M. Lehrer, P. W. Davenport, I. Van Diest, and O. Van Den Bergh, “Respiratory variability and sighing: A psychophysiological reset model,” Biol Psychol, vol. 93, no. 1, pp. 24–32, 2013, doi: 10.1016/j.biopsycho.2012.12.001.

[76] B. Neuroscience, “Transcranial static magnetic stimulation (tSMS)の基礎と応用,” 2011 (Fundamentals and Applications)

[77] G. Foffani and A. Oliviero, “Transcranial static magnetic field stimulation,” The Oxford Handbook of Transcranial Stimulation: Second Edition, vol. 16, no. 3, pp. 226–250, 2021, doi: 10.1093/oxfordhb/9780198832256.013.8.

[78] Chang-Zern Hong, “Static magnetic field influence on human nerve function,” Arch Phys Med Rehabil, vol. 68, no. 3, pp. 162–164, 1987.

[79] A. Oliviero, L. Mordillo-Mateos, P. Arias, I. Panyavin, G. Foffani, and J. Aguilar, “Transcranial static magnetic field stimulation of the human motor cortex,” Journal of Physiology, vol. 589, no. 20, pp. 4949–4958, 2011, doi: 10.1113/jphysiol.2011.211953.

[80] A. P. Colbert et al., “Static magnetic field therapy: A critical review of treatment parameters,” Evidence-based Complementary and Alternative Medicine, vol. 6, no. 2, pp. 133–139, 2009, doi: 10.1093/ecam/nem131.

[81] I. Nojima, A. Oliviero, and T. Mima, “Transcranial static magnetic stimulation -From bench to bedside and beyond.,” Neurosci Res, vol. 156, pp. 250–255, Jul. 2020, doi: 10.1016/j.neures.2019.12.005.

[82] A. Hollis et al., “Transcranial Static Magnetic Field Stimulation of the Motor Cortex in Children,” Front Neurosci, vol. 14, no. May, pp. 1–13, 2020, doi: 10.3389/fnins.2020.00464.

[83] A. D. Rosen, “Studies on the effect of static magnetic fields on biological systems,” Progress in Electromagnetics Research Symposium, vol. 2, no. May, pp. 1146–1149, 2010, doi: 10.2529/piers090529114533.

[84] C. Carrasco-López et al., “Static magnetic field stimulation over parietal cortex enhances somatosensory detection in humans,” Journal of Neuroscience, vol. 37, no. 14, pp. 3840–3847, 2017, doi: 10.1523/JNEUROSCI.2123-16.2017.

[85] B. Zhang, X. Yuan, H. Lv, J. Che, S. Wang, and P. Shang, “Biophysical mechanisms underlying the effects of static magnetic fields on biological systems,” Prog Biophys Mol Biol, vol. 177, no. January, pp. 14–23, 2023, doi: 10.1016/j.pbiomolbio.2022.09.002.

[86] W. Paulus, “Transcranial static magnetic field stimulation in man: Making things as simple as possible?,” Journal of Physiology, vol. 589, no. 24, pp. 5917–5918, 2011, doi: 10.1113/jphysiol.2011.221655.

[87] I. Nojima, S. Koganemaru, T. Mima, T. Kida, M. J. N. Brown, and H. Kirimoto, “Combination of static magnetic fields and peripheral nerve stimulation can alter focal cortical excitability,” Front Hum Neurosci, vol. 10, no. NOV2016, pp. 1–8, 2016, doi: 10.3389/fnhum.2016.00598.

[88] S. Lorenz, B. Alex, and T. Kammer, “Ten minutes of transcranial static magnetic field stimulation does not reliably modulate motor cortex excitability,” PLoS One, vol. 15, no. 5, pp. 1–9, 2020, doi: 10.1371/journal.pone.0233614.

[89] S. Shibata, T. Watanabe, Y. Yukawa, M. Minakuchi, R. Shimomura, and T. Mima, “Effect of transcranial static magnetic stimulation on intracortical excitability in the contralateral primary motor cortex,” Neurosci Lett, vol. 723, pp. 4–8, 2020, doi: 10.1016/j.neulet.2020.134871.

[90] M. Kufner, S. Brückner, and T. Kammer, “No modulatory effects by transcranial static magnetic field stimulation of human motor and somatosensory cortex,” Brain Stimul, vol. 10, no. 3, pp. 703–710, 2017, doi: 10.1016/j.brs.2017.03.001.

[91] H. Kirimoto et al., “Transcranial static magnetic field stimulation over the primary motor cortex induces plastic changes in cortical nociceptive processing,” Front Hum Neurosci, vol. 12, pp. 1–12, 2018, doi: 10.3389/fnhum.2018.00063.

[92] J. A. Pineda-Pardo et al., Static magnetic field stimulation of the supplementary motor area modulates resting-state activity and motor behavior, vol. 2, no. 1. 2019. doi: 10.1038/s42003-019-0643-8.

[93] D. Tsuru et al., “The effects of transcranial static magnetic fields stimulation over the supplementary motor area on anticipatory postural adjustments,” Neurosci Lett, vol. 723, Apr. 2020, doi: 10.1016/j.neulet.2020.134863.

[94] J. J. Gonzalez-Rosa et al., “Static magnetic field stimulation over the visual cortex increases alpha oscillations and slows visual search in humans,” Journal of Neuroscience, vol. 35, no. 24, pp. 9182–9193, 2015, doi: 10.1523/JNEUROSCI.4232-14.2015.

[95] H. Kirimoto et al., “Effect of transcranial static magnetic field stimulation over the sensorimotor cortex on somatosensory evoked potentials in humans,” Brain Stimul, vol. 7, no. 6, pp. 836–840, 2014, doi: 10.1016/j.brs.2014.09.016.

[96] V. Soto-León et al., “Effects of transcranial static magnetic field stimulation over the left dorsolateral prefrontal cortex on random number generation,” Clinical Neurophysiology, vol. 149, no. February, pp. 18–24, 2023, doi: 10.1016/j.clinph.2023.02.163.

[97] M. Dileone, L. Mordillo-Mateos, A. Oliviero, and G. Foffani, “Significant influence of static magnetic field stimulation applied for 30 minutes over the human M1 on corticospinal excitability,” May 01, 2020, Elsevier Inc. doi: 10.1016/j.brs.2020.02.008.

[98] J. Park, C. Lee, S. Lee, and C. H. Im, “Comparison of magnetic field distributions generated by various permanent magnets for transcranial static magnetic stimulation: A simulation study,” Comput Biol Med, vol. 114, Nov. 2019, doi:10.1016/j.compbiomed.2019.103476.

[99] C. Rivadulla, G. Foffani, and A. Oliviero, “Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex,” Neuromodulation, vol. 17, no. 5, pp. 438–442, 2014, doi:10.1111/ner.12125.

[100] C. Pagge, J. Caballero-Insaurriaga, A. Oliviero, G. Foffani, and C. Ammann, “Transcranial static magnetic field stimulation of the supplementary motor area decreases corticospinal excitability in the motor cortex: a pilot study,” Sci Rep, vol. 14, no. 1, pp. 1–8, 2024, doi: 10.1038/s41598-024-57030-0.

[101] A. Hernando et al., “Effects of Moderate Static Magnetic Field on Neural Systems Is a Non-invasive Mechanical Stimulation of the Brain Possible Theoretically?,” Front Neurosci, vol. 14, no. May, pp. 1–9, 2020, doi: 10.3389/fnins.2020.00419.

[102] A. Sheffield, S. Ahn, S. Alagapan, and F. Fröhlich, “Modulating neural oscillations by transcranial static magnetic field stimulation of the dorsolateral prefrontal cortex: A crossover, double-blind, sham-controlled pilot study,” European Journal of Neuroscience, vol. 49, no. 2, pp. 250–262, 2019, doi: 10.1111/ejn.14232.

 

Related research​

 

Fine motor control declineA.[1]​Paired Associative Stimulus[2], [3], [4]​Stroke[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47]​TBI.[48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65]​Brain state[66], [67], [68], [69], [70], [71], [72], [73]​Physiologic sigh[74], [75]​Static magnetic stim.[76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101], [102]​​[1] B. P. Johnson and K. P. Westlake, “Chronic Poststroke Deficits in Gross and Fine Motor Control of the Ipsilesional Upper Limb,” Am J PhysMed Rehabil, vol. 100, no. 4, pp. 345–348, 2021, doi: 10.1097/PHM.0000000000001569.[2] J. A. Palmer, S. L. Wolf, and M. R. Borich, “Paired associative stimulation modulates corticomotor excitability in chronic stroke: A preliminaryinvestigation.,” Restor Neurol Neurosci, vol. 36, no. 2, pp. 183–194, 2018, doi: 10.3233/RNN-170785.[3] L. Minkova et al., “Determinants of inter-individual variability in corticomotor excitability induced by paired associative stimulation,” FrontNeurosci, vol. 13, no. JUL, pp. 1–6, 2019, doi: 10.3389/fnins.2019.00841.[4] G. Alder, N. Signal, S. Olsenv, and D. Taylor, “A systematic review of paired associative stimulation (PAS) to modulate lower limb corticomotorexcitability: Implications for stimulation parameter selection and experimental design,” Front Neurosci, vol. 13, no. AUG, pp. 1–37, 2019, doi:10.3389/fnins.2019.00895.[5] J. K. Ferris, J. L. Neva, B. A. Francisco, and L. A. Boyd, “Bilateral Motor Cortex Plasticity in Individuals With Chronic Stroke, Induced byPaired Associative Stimulation,” Neurorehabil Neural Repair, vol. 32, no. 8, pp. 671–681, 2018, doi: 10.1177/1545968318785043.[6] G. Romain et al., “Long-term relative survival after stroke: The dijon stroke registry,” Neuroepidemiology, vol. 11, pp. 1–18, 2019, doi:10.1159/000505160.[7] F. C. Hummel and L. G. Cohen, “Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?,” LancetNeurology, vol. 5, no. 8, pp. 708–712, 2006, doi: 10.1016/S1474-4422(06)70525-7.[8] M. R. M. Rodrigues, M. Slimovitch, G. Chilingaryan, and M. F. Levin, “Does the Finger-to-Nose Test measure upper limb coordination inchronic stroke?,” J Neuroeng Rehabil, vol. 14, no. 1, pp. 1–11, 2017, doi: 10.1186/s12984-016-0213-y.[9] E. Tavernese et al., “Segmental muscle vibration improves reaching movement in patients with chronic stroke. A randomized controlled trial,”2013. doi: 10.3233/NRE-130881.[10] E. C. Wonsetler and M. G. Bowden, “A systematic review of mechanisms of gait speed change post-stroke. part 1: Spatiotemporal parametersand asymmetry ratios,” Top Stroke Rehabil, vol. 24, no. 6, pp. 435–446, 2017, doi: 10.1080/10749357.2017.1285746.[11] C. S. Kase, P. A. Wolf, M. Kelly-Hayes, W. B. Kannel, A. Beiser, and R. B. D’Agostino, “Intellectual decline after stroke: The FraminghamStudy,” Stroke, vol. 29, no. 4, pp. 805–812, 1998, doi: 10.1161/01.STR.29.4.805.[12] P. Langhorne, F. Coupar, and A. Pollock, “Motor recovery after stroke: a systematic review,” Lancet Neurol, vol. 8, no. 8, pp. 741–754, 2009,doi: 10.1016/S1474-4422(09)70150-4.[13] C. Grefkes and G. R. Fink, “Recovery from stroke: current concepts and future perspectives,” Neurol Res Pract, vol. 2, no. 1, 2020, doi:10.1186/s42466-020-00060-6.[14] P. B. Gorelick, “The global burden of stroke: persistent and disabling,” Lancet Neurol, vol. 18, no. 5, pp. 417–418, 2019, doi: 10.1016/S1474-4422(19)30030-4.[15] P. Ferdinand and C. Roffe, “Hypoxia after stroke: A review of experimental and clinical evidence,” Exp Transl Stroke Med, vol. 8, no. 1, pp. 1–8,2016, doi: 10.1186/s13231-016-0023-0.[16] M. A. Moskowitz, E. H. Lo, and C. Iadecola, “The science of stroke: Mechanisms in search of treatments,” Neuron, vol. 68, no. 1, p. 161, 2010,doi: 10.1016/j.neuron.2010.08.019.[17] N. Takeuchi and S. I. Izumi, “Maladaptive plasticity for motor recovery after stroke: Mechanisms and approaches,” Neural Plast, vol. 2012,2012, doi: 10.1155/2012/359728.[18] H. T. Hendricks, J. Van Limbeek, A. C. Geurts, and M. J. Zwarts, “Motor recovery after stroke: A systematic review of the literature,” Arch PhysMed Rehabil, vol. 83, no. 11, pp. 1629–1637, 2002, doi: 10.1053/apmr.2002.35473.[19] L. V. Bradnam, C. M. Stinear, and W. D. Byblow, “Ipsilateral motor pathways after stroke: Implications for noninvasive brain stimulation,”Front Hum Neurosci, vol. 7, no. APR 2013, pp. 1–8, 2013, doi: 10.3389/fnhum.2013.00184.[20] G. Di Pino et al., “Modulation of brain plasticity in stroke: A novel model for neurorehabilitation,” Nat Rev Neurol, vol. 10, no. 10, pp. 597–608,2014, doi: 10.1038/nrneurol.2014.162.[21] “Continual long-term physiotherapy after stroke: A health technology assessment,” Ont Health Technol Assess Ser, vol. 20, no. 7, pp. 1–70, 2020.[22] N. Y. H. Yang, D. Zhou, R. C. K. Chung, C. W. P. Li-Tsang, and K. N. K. Fong, “Rehabilitation interventions for unilateral neglect after stroke: A systematic review from 1997 through 2012,” Front Hum Neurosci, no. APR 2013, pp. 2–14, 2013, doi: 10.3389/fnhum.2013.00187.[23] N. Okabe, K. Narita, and O. Miyamoto, “Axonal remodeling in the corticospinal tract after stroke: How does rehabilitative training modulate it?,” Neural Regen Res, vol. 12, no. 2, pp. 185–192, 2017, doi: 10.4103/1673-5374.200792.[24] D. A. Nowak, C. Grefkes, M. Ameli, and G. R. Fink, “Interhemispheric competition after stroke: Brain stimulation to enhance recovery offunction of the affected hand,” Neurorehabil Neural Repair, vol. 23, no. 7, pp. 641–656, 2009, doi: 10.1177/1545968309336661.[25] J. Kim et al., “Global Stroke Statistics 2019,” International Journal of Stroke, vol. 15, no. 8, pp. 819–838, 2020, doi:10.1177/1747493020909545.[26] U. Kischka and D. T. Wade, “Rehabilitation after stroke,” Handbook of Cerebrovascular Diseases, Second Edition, Revised and Expanded, pp. 231–241, 2004, doi: 10.1093/med/9780199641208.003.0021.[27] R. L. Harvey, “Motor recovery after stroke,” 2003. doi: 10.1016/S1047-9651(02)00081-5.[28] S. M. Hatem et al., “Rehabilitation of motor function after stroke: A multiple systematic review focused on techniques to stimulate upper extremity recovery,” Front Hum Neurosci, vol. 10, no. SEP2016, pp. 1–42, 2016, doi: 10.3389/fnhum.2016.00442.[29] S. C. Cramer, “Treatments to promote neural repair after stroke,” J Stroke, vol. 20, no. 1, pp. 57–70, 2018, doi: 10.5853/jos.2017.02796.[30] X. Chen, P. Xie, Y. Zhang, Y. Chen, S. Cheng, and L. Zhang, “Abnormal functional corticomuscular coupling after stroke,” Neuroimage Clin, vol. 19, no. April, pp. 147–159, 2018, doi: 10.1016/j.nicl.2018.04.004.[31] B. R. Webster, P. A. Celnik, and L. G. Cohen, “Noninvasive Brain Stimulation in Stroke Rehabilitation,” NeuroRx, vol. 3, no. 4, pp. 474–481,2006, doi: 10.1016/j.nurx.2006.07.008.[32] C. Costantino, F. Petraglia, L. L. Sabetta, and R. Giumelli, “Effects of Single or Multiple Sessions of Whole Body Vibration in Stroke: Is There Any Evidence to Support the Clinical Use in Rehabilitation?,” Rehabil Res Pract, vol. 2018, pp. 1–17, 2018, doi: 10.1155/2018/8491859.[33] L. A. Simpson, W. C. Miller, and J. J. Eng, “Effect of stroke on fall rate, location and predictors: A prospective comparison of older adults with and without stroke,” PLoS One, vol. 6, no. 4, pp. 1–8, 2011, doi: 10.1371/journal.pone.0019431.[34] N. Mrachacz-Kersting et al., “Brain state–dependent stimulation boosts functional recovery following stroke,” Ann Neurol, vol. 85, no. 1, pp. 84–95, 2019, doi: 10.1002/ana.25375.[35] N. Bolognini, C. Russo, and D. J. Edwards, “The sensory side of post-stroke motor rehabilitation,” Restor Neurol Neurosci, vol. 34, no. 4, pp. 571–586, 2016, doi: 10.3233/RNN-150606.[36] S. Ovadia-Caro, A. A. Khalil, B. Sehm, A. Villringer, V. V. Nikulin, and M. Nazarova, “Predicting the response to noninvasive brain stimulation in stroke,” Front Neurol, vol. 10, no. APR, pp. 1–14, 2019, doi: 10.3389/fneur.2019.00302.[37] S. Li, G. E. Francisco, and P. Zhou, “Post-stroke hemiplegic gait: New perspective and insights,” Front Physiol, vol. 9, no. AUG, pp. 1–14, 2018, doi: 10.3389/fphys.2018.01021.[38] D. L. Rimmele et al., “Association of extrapyramidal tracts’ integrity with performance in fine motor skills after stroke,” Stroke, vol. 49, no. 12, pp. 2928–2932, 2018, doi: 10.1161/STROKEAHA.118.022706.[39] T. C. Harrison, G. Silasi, J. D. Boyd, and T. H. Murphy, “Displacement of sensory maps and disorganization of motor cortex after targeted stroke in mice,” Stroke, vol. 44, no. 8, pp. 2300–2306, 2013, doi:10.1161/STROKEAHA.113.001272.[40] S. K. Lui and M. H. Nguyen, “Elderly Stroke Rehabilitation: Overcoming the Complications and Its Associated Challenges,” Curr Gerontol Geriatr Res, vol. 2018, 2018, doi: 10.1155/2018/9853837.[41] C. M. Stinear, “Stroke rehabilitation research needs to be different to make a difference,” F1000Res, vol. 5, p. 10.12688/f1000research.8722.1. eCollection 2016, 2016.[42] P. Padmanabhan, K. S. Rao, S. Gulhar, K. M. Cherry-Allen, K. A. Leech, and R. T. Roemmich, “Persons post-stroke improve step length symmetry by walking asymmetrically,” J Neuroeng Rehabil, vol. 17, no. 1, pp. 1–21, 2020, doi: 10.1186/s12984-020-00732-z.[43] L. Pellegrino, M. Coscia, P. Giannoni, L. Marinelli, and M. Casadio, “Stroke impairs the control of isometric forces and muscle activations in the ipsilesional arm,” Sci Rep, vol. 11, no. 1, pp. 1–18, 2021, doi: 10.1038/s41598-021-96329-0.[44] N. M. Kitchen et al., “The complementary dominance hypothesis: a model for remediating the ‘good’ hand in stroke survivors,” Journal of Physiology, vol. 603, no. 3, pp. 663–683, 2025, doi: 10.1113/JP285561.[45] C. Alia et al., “Neuroplastic changes following brain ischemia and their contribution to stroke recovery: Novel approaches in neurorehabilitation,” Front Cell Neurosci, vol. 11, pp. 1–29, 2017, doi: 10.3389/fncel.2017.00076.[46] L. Hak, H. Houdijk, P. Van Der Wurff, M. R. Prins, P. J. Beek, and J. H. Van Dieën, “Stride frequency and length adjustment in post-stroke individuals: Influence on the margins of stability,” J Rehabil Med, vol. 47, no. 2, pp. 126–132, 2015, doi: 10.2340/16501977-1903.[47] F. Qi, M. A. Nitsche, X. Ren, D. Wang, and L. Wang, “Top-down and bottom-up stimulation techniques combined with action observation treatment in stroke rehabilitation: a perspective,” Front Neurol, vol. 14, no. July, pp. 1–11, 2023, doi: 10.3389/fneur.2023.1156987.[48] C. L. Mayer, B. R. Huber, and E. Peskind, “Traumatic brain injury, neuroinflammation, and post-traumatic headaches,” Headache, vol. 53, no. 9, pp. 1523–1530, 2013, doi: 10.1111/head.12173.[49] J. H. Olver, J. L. Ponsford, and C. A. Curran, “Outcome following traumatic brain injury: A comparison between 2 and 5 years after injury,” Brain Inj, vol. 10, no. 11, pp. 841–848, 1996, doi: 10.1080/026990596123945.[50] M. Saltychev, M. Eskola, O. Tenovuo, and K. Laimi, “Return to work after traumatic brain injury: Systematic review,” Brain Inj, vol. 27, no. 13–14, pp. 1516–1527, 2013, doi: 10.3109/02699052.2013.831131.[51] L. M. Shulman, “Emotional Traumatic Brain Injury,” Cognitive and Behavioral Neurology, vol. 33, no. 4, pp. 301–303, 2020, doi: 10.1097/WNN.0000000000000243.[52] E. Park, J. D. Bell, and A. J. Baker, “Traumatic brain injury: Can the consequences be stopped?,” Cmaj, vol. 178, no. 9, pp. 1163–1170, 2008, doi: 10.1503/cmaj.080282.[53] A. A. B. Jamjoom, J. Rhodes, P. J. D. Andrews, and S. G. N. Grant, “The synapse in traumatic brain injury,” Brain, vol. 144, no. 1, pp. 18–31, 2021, doi: 10.1093/brain/awaa321.[54] L. Avellone and P. Wehman, “Return to work following traumatic brain injury,” Brain Injury Medicine, Third Edition: Principles and Practice, vol. 29, no. 17, pp. 1268–1276, 2021, doi: 10.1891/9780826143051.0083.[55] J. L. Ponsford et al., “Longitudinal follow-up of patients with traumatic brain injury: Outcome at two, five, and ten years post-injury,” J Neurotrauma, vol. 31, no. 1, pp. 64–77, 2014, doi: 10.1089/neu.2013.2997.[56] N. Castor and F. El Massioui, “Traumatic brain injury and stroke: does recovery differ?,” Brain Inj, vol. 32, no. 13–14, pp. 1803–1810, 2018, doi: 10.1080/02699052.2018.1508748.[57] D. Esterov and B. D. Greenwald, “Autonomic dysfunction after mild traumatic brain injury,” Brain Sci, vol. 7, no. 8, pp. 1–8, 2017, doi: 10.3390/brainsci7080100.[58] N. S. N. Graham and D. J. Sharp, “Understanding neurodegeneration after traumatic brain injury: From mechanisms to clinical trials in dementia,” J Neurol Neurosurg Psychiatry, vol. 90, no. 11, pp. 1221–1233, 2019, doi: 10.1136/jnnp-2017-317557.[59] S. Fordington and M. Manford, “A review of seizures and epilepsy following traumatic brain injury,” J Neurol, vol. 267, no. 10, pp. 3105–3111, 2020, doi: 10.1007/s00415-020-09926-w.[60] D. W. Simon, M. J. McGeachy, H. Baylr, R. S. B. Clark, D. J. Loane, and P. M. Kochanek, “The far-reaching scope of neuroinflammation after traumatic brain injury,” Nat Rev Neurol, vol. 13, no. 3, pp. 171–191, 2017, doi: 10.1038/nrneurol.2017.13.[61] M. Hunfalvay et al., “Vertical smooth pursuit as a diagnostic marker of traumatic brain injury,” Concussion, vol. 5, no. 1, pp. 1–12, 2020, doi: 10.2217/cnc-2019-0013.[62] N. M. Bajwa, C. Kesavan, and S. Mohan, “Long-term consequences of Traumatic brain injury in bone metabolism,” Front Neurol, vol. 9, no. MAR, pp. 1–9, 2018, doi: 10.3389/fneur.2018.00115.[63] V. J. Sydnor et al., “Mild traumatic brain injury impacts associations between limbic system microstructure and post-traumatic stress disorder symptomatology,” Neuroimage Clin, vol. 26, no. January, 2020, doi: 10.1016/j.nicl.2020.102190.[64] C. Scaratti, M. Leonardi, D. Sattin, S. Schiavolin, M. Willems, and A. Raggi, “Work-related difficulties in patients with traumatic brain injury: a systematic review on predictors and associated factors,” Disabil Rehabil, vol. 39, no. 9, pp. 847–855, 2017, doi: 10.3109/09638288.2016.1162854.[65] C. Arbour, Y. Bouferguene, R. Beauregard, G. Lavigne, and A. Herrero Babiloni, “Update on the prevalence of persistent post-traumatic headache in adult civilian traumatic brain injury: Protocol for a systematic review and meta-analysis,” BMJ Open, vol. 10, no. 1, pp. 1–6, 2020, doi: 10.1136/bmjopen-2019-032706.[66] T. O. Bergmann, “Brain state-dependent brain stimulation,” Front Psychol, vol. 9, no. OCT, pp. 1–4, 2018, doi: 10.3389/fpsyg.2018.02108.[67] J. Silvanto, N. Muggleton, and V. Walsh, “State-dependency in brain stimulation studies of perception and cognition,” Trends Cogn Sci, vol. 12, no. 12, pp. 447–454, 2008, doi: 10.1016/j.tics.2008.09.004.[68] S. Hanslmayr and F. Roux, “Human Memory: Brain-State-Dependent Effects of Stimulation,” Current Biology, vol. 27, no. 10, pp. R385–R387, 2017, doi: 10.1016/j.cub.2017.03.079.[69] A. Gharabaghi et al., “Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: Enhancing motor cortex excitability for neurorehabilitation,” Front Hum Neurosci, vol. 8, no. MAR, 2014, doi: 10.3389/fnhum.2014.00122.[70] U. Ziemann, D. Desideri, P. Belardinelli, and C. Zrenner, “Brain-State Dependent Stimulation in Human Motor Cortex for Plasticity Induction Using EEG-TMS,” Biosystems and Biorobotics, vol. 21, pp. 1057–1060, 2019, doi: 10.1007/978-3-030-01845-0_211.[71] D. Kraus, G. Naros, R. Guggenberger, M. T. Leão, U. Ziemann, and A. Gharabaghi, “Recruitment of additional corticospinal pathways in the human brain with state-dependent paired associative stimulation,” Journal of Neuroscience, vol. 38, no. 6, pp. 1396–1407, 2018, doi: 10.1523/JNEUROSCI.2893-17.2017.[72] N. Schaworonkow, J. Triesch, U. Ziemann, and C. Zrenner, “EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities,” Brain Stimul, vol. 12, no. 1, pp. 110–118, 2019, doi: 10.1016/j.brs.2018.09.009.[73] J. C. Peters, J. Reithler, T. A. de Graaf, T. Schuhmann, R. Goebel, and A. T. Sack, “Concurrent human TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-subcortical network activity,” Commun Biol, vol. 3, no. 1, pp. 1–11, 2020, doi: 10.1038/s42003-020-0764-0.[74] E. Vlemincx, I. Van Diest, and O. Van den Bergh, “A sigh of relief or a sigh to relieve: The psychological and physiological relief effect of deep breaths,” Physiol Behav, vol. 165, no. Cdc, pp. 127–135, 2016, doi: 10.1016/j.physbeh.2016.07.004.[75] E. Vlemincx, J. L. Abelson, P. M. Lehrer, P. W. Davenport, I. Van Diest, and O. Van Den Bergh, “Respiratory variability and sighing: A psychophysiological reset model,” Biol Psychol, vol. 93, no. 1, pp. 24–32, 2013, doi: 10.1016/j.biopsycho.2012.12.001.[76] B. Neuroscience, “Transcranial static magnetic stimulation (tSMS)の基礎と応用,” 2011 (Fundamentals and Applications)[77] G. Foffani and A. Oliviero, “Transcranial static magnetic field stimulation,” The Oxford Handbook of Transcranial Stimulation: Second Edition, vol. 16, no. 3, pp. 226–250, 2021, doi: 10.1093/oxfordhb/9780198832256.013.8.[78] Chang-Zern Hong, “Static magnetic field influence on human nerve function,” Arch Phys Med Rehabil, vol. 68, no. 3, pp. 162–164, 1987.[79] A. Oliviero, L. Mordillo-Mateos, P. Arias, I. Panyavin, G. Foffani, and J. Aguilar, “Transcranial static magnetic field stimulation of the human motor cortex,” Journal of Physiology, vol. 589, no. 20, pp. 4949–4958, 2011, doi: 10.1113/jphysiol.2011.211953.[80] A. P. Colbert et al., “Static magnetic field therapy: A critical review of treatment parameters,” Evidence-based Complementary and Alternative Medicine, vol. 6, no. 2, pp. 133–139, 2009, doi: 10.1093/ecam/nem131.[81] I. Nojima, A. Oliviero, and T. Mima, “Transcranial static magnetic stimulation -From bench to bedside and beyond.,” Neurosci Res, vol. 156, pp. 250–255, Jul. 2020, doi: 10.1016/j.neures.2019.12.005.[82] A. Hollis et al., “Transcranial Static Magnetic Field Stimulation of the Motor Cortex in Children,” Front Neurosci, vol. 14, no. May, pp. 1–13, 2020, doi: 10.3389/fnins.2020.00464.[83] A. D. Rosen, “Studies on the effect of static magnetic fields on biological systems,” Progress in Electromagnetics Research Symposium, vol. 2, no. May, pp. 1146–1149, 2010, doi: 10.2529/piers090529114533.[84] C. Carrasco-López et al., “Static magnetic field stimulation over parietal cortex enhances somatosensory detection in humans,” Journal of Neuroscience, vol. 37, no. 14, pp. 3840–3847, 2017, doi: 10.1523/JNEUROSCI.2123-16.2017.[85] B. Zhang, X. Yuan, H. Lv, J. Che, S. Wang, and P. Shang, “Biophysical mechanisms underlying the effects of static magnetic fields on biological systems,” Prog Biophys Mol Biol, vol. 177, no. January, pp. 14–23, 2023, doi: 10.1016/j.pbiomolbio.2022.09.002.[86] W. Paulus, “Transcranial static magnetic field stimulation in man: Making things as simple as possible?,” Journal of Physiology, vol. 589, no. 24, pp. 5917–5918, 2011, doi: 10.1113/jphysiol.2011.221655.[87] I. Nojima, S. Koganemaru, T. Mima, T. Kida, M. J. N. Brown, and H. Kirimoto, “Combination of static magnetic fields and peripheral nerve stimulation can alter focal cortical excitability,” Front Hum Neurosci, vol. 10, no. NOV2016, pp. 1–8, 2016, doi: 10.3389/fnhum.2016.00598.[88] S. Lorenz, B. Alex, and T. Kammer, “Ten minutes of transcranial static magnetic field stimulation does not reliably modulate motor cortex excitability,” PLoS One, vol. 15, no. 5, pp. 1–9, 2020, doi: 10.1371/journal.pone.0233614.[89] S. Shibata, T. Watanabe, Y. Yukawa, M. Minakuchi, R. Shimomura, and T. Mima, “Effect of transcranial static magnetic stimulation on intracortical excitability in the contralateral primary motor cortex,” Neurosci Lett, vol. 723, pp. 4–8, 2020, doi: 10.1016/j.neulet.2020.134871.[90] M. Kufner, S. Brückner, and T. Kammer, “No modulatory effects by transcranial static magnetic field stimulation of human motor and somatosensory cortex,” Brain Stimul, vol. 10, no. 3, pp. 703–710, 2017, doi: 10.1016/j.brs.2017.03.001.[91] H. Kirimoto et al., “Transcranial static magnetic field stimulation over the primary motor cortex induces plastic changes in cortical nociceptive processing,” Front Hum Neurosci, vol. 12, pp. 1–12, 2018, doi: 10.3389/fnhum.2018.00063.[92] J. A. Pineda-Pardo et al., Static magnetic field stimulation of the supplementary motor area modulates resting-state activity and motor behavior, vol. 2, no. 1. 2019. doi: 10.1038/s42003-019-0643-8.[93] D. Tsuru et al., “The effects of transcranial static magnetic fields stimulation over the supplementary motor area on anticipatory postural adjustments,” Neurosci Lett, vol. 723, Apr. 2020, doi: 10.1016/j.neulet.2020.134863.[94] J. J. Gonzalez-Rosa et al., “Static magnetic field stimulation over the visual cortex increases alpha oscillations and slows visual search in humans,” Journal of Neuroscience, vol. 35, no. 24, pp. 9182–9193, 2015, doi: 10.1523/JNEUROSCI.4232-14.2015.[95] H. Kirimoto et al., “Effect of transcranial static magnetic field stimulation over the sensorimotor cortex on somatosensory evoked potentials in humans,” Brain Stimul, vol. 7, no. 6, pp. 836–840, 2014, doi: 10.1016/j.brs.2014.09.016.[96] V. Soto-León et al., “Effects of transcranial static magnetic field stimulation over the left dorsolateral prefrontal cortex on random number generation,” Clinical Neurophysiology, vol. 149, no. February, pp. 18–24, 2023, doi: 10.1016/j.clinph.2023.02.163.[97] M. Dileone, L. Mordillo-Mateos, A. Oliviero, and G. Foffani, “Significant influence of static magnetic field stimulation applied for 30 minutes over the human M1 on corticospinal excitability,” May 01, 2020, Elsevier Inc. doi: 10.1016/j.brs.2020.02.008.[98] J. Park, C. Lee, S. Lee, and C. H. Im, “Comparison of magnetic field distributions generated by various permanent magnets for transcranial static magnetic stimulation: A simulation study,” Comput Biol Med, vol. 114, Nov. 2019, doi:10.1016/j.compbiomed.2019.103476.[99] C. Rivadulla, G. Foffani, and A. Oliviero, “Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex,” Neuromodulation, vol. 17, no. 5, pp. 438–442, 2014, doi:10.1111/ner.12125.[100] C. Pagge, J. Caballero-Insaurriaga, A. Oliviero, G. Foffani, and C. Ammann, “Transcranial static magnetic field stimulation of the supplementary motor area decreases corticospinal excitability in the motor cortex: a pilot study,” Sci Rep, vol. 14, no. 1, pp. 1–8, 2024, doi: 10.1038/s41598-024-57030-0.[101] A. Hernando et al., “Effects of Moderate Static Magnetic Field on Neural Systems Is a Non-invasive Mechanical Stimulation of the Brain Possible Theoretically?,” Front Neurosci, vol. 14, no. May, pp. 1–9, 2020, doi: 10.3389/fnins.2020.00419.[102] A. Sheffield, S. Ahn, S. Alagapan, and F. Fröhlich, “Modulating neural oscillations by transcranial static magnetic field stimulation of the dorsolateral prefrontal cortex: A crossover, double-blind, sham-controlled pilot study,” European Journal of Neuroscience, vol. 49, no. 2, pp. 250–262, 2019, doi: 10.1111/ejn.14232.​​

bottom of page