top of page

Releated Scientific Research

[1] K. N. Corps, T. L. Roth, and D. B. McGavern,

“Inflammation and neuroprotection in traumatic brain injury”

[2] D. K. Quinn, A. R. Mayer, C. L. Master, and J. R. Fann, “Prolonged postconcussive


 JAMA Neurol., vol. 72, no. 3, pp. 355–362, 2015,

Am. J. Psychiatry, vol. 175, no. 2, pp. 103–111, 2018,

[3] E. Toledo et al., “The young brain and concussion: Imaging as a biomarker for diagnosis

and prognosis,”

Neurosci. Biobehav. Rev., vol. 36, no. 6, pp. 1510–1531, 2012, doi: 10.1016/j.neubiorev.2012.03.007.

[4] D. Padmaja, A. Luthra, and R. Mitra,

“Chapter 32 - Neurotrauma,” pp. 2–3, 2022.

[5] S. T. DeKosky, M. D. Ikonomovic, and S. Gandy, “Traumatic Brain Injury — Football,

Warfare, and Long-Term Effects,”

N. Engl. J. Med., vol. 363, no. 14, pp. 1293–1296,

2010, doi: 10.1056/nejmp1007051.

[6] E. Park, J. D. Bell, and A. J. Baker, “Traumatic brain injury: Can the consequences be


Cmaj, vol. 178, no. 9, pp. 1163–1170, 2008, doi: 10.1503/cmaj.080282.

[7] C. M. Permenter, R. J. F. Thomas, and A. Sherman, “Postconcussive syndrome,” Sport.

Concussion Diagnosis Manag. Second Ed.

pp. 99–130, 2017, doi: 10.1201/9781315153629.

[8] J. V. Goozée, B. E. Murdoch, D. G. Theodoros, and P. D. Stokes, “Kinematic analysis of

tongue movements in dysarthria following traumatic brain injury using electromagnetic

articulography,” Brain Inj., vol. 14, no. 2

pp. 153–174, 2000, doi: 10.1080/026990500120817.

[9] Y. T. Wang, R. D. Kent, J. R. Duffy, J. E. Thomas, and G. Weismer, “Alternating motion

rate as an index of speech motor disorder in traumatic brain injury,” Clin. Linguist.

Phonetics, vol. 18, no. 1

 pp. 57–84, 2004 doi: 10.1080/02699200310001596160.

 [10] D. W. Simon, M. J. McGeachy, H. Baylr, R. S. B. Clark, D. J. Loane, and P. M.

Kochanek, “The far-reaching scope of neuroinflammation after traumatic brain injury,”

Nat. Rev. Neurol., vol. 13, no. 3

 pp. 171–191, 2017, doi: 10.1038/nrneurol.2017.13.

[11] K. Shi, J. Zhang, J. fei Dong, and F. D. Shi, “Dissemination of brain inflammation in

traumatic brain injury,” Cell. Mol. Immunol., vol. 16, no. 6

pp. 523–530, 2019, doi: 10.1038/s41423-019-0213-5.

[12] C. L. Mayer, B. R. Huber, and E. Peskind, “Traumatic brain injury, neuroinflammation,

and post-traumatic headaches,” Headache, vol. 53, no. 9

pp. 1523–1530, 2013, doi: 10.1111/head.12173.

[13] A. C. Gallup, “Abnormal yawning in stroke patients: The role of brain thermoregulation,”

Front. Neurosci., vol. 8, no. SEP

pp. 1–2, 2014, doi: 10.3389/fnins.2014.00300.

[14] A. C. Gallup and G. G. Gallup, “Yawning as a Brain Cooling Mechanism: Nasal

Breathing and Forehead Cooling Diminish the Incidence of Contagious Yawning,” Evol.

Psychol., vol. 5, no. 1

p. 147470490700500, 2007, doi: 10.1177/147470490700500109

[15] A. Nicotra, N. M. Khalil, P. Owbridge, M. Hakda, and Y. Beitverda, “Pathological

yawning as an ictal seizure manifestation in the elderly,” BMJ Case Rep.

pp. 1–5, 2012, doi: 10.1136/bcr-01-2012-5618.

[16] L. Cattaneo, L. Cucurachi, E. Chierici, and G. Pavesi, “Pathological yawning as a

presenting symptom of brain stem ischaemia in two patients,” J. Neurol. Neurosurg.

Psychiatry, vol. 77, no. 1

pp. 98–100, 2006, doi: 10.1136/jnnp.2005.075267.

[17] H. Krestel, C. Weisstanner, C. W. Hess, C. L. Bassetti, A. Nirkko, and R. Wiest, “Insular

and caudate lesions release abnormal yawning in stroke patients,” Brain Struct. Funct.,

vol. 220, no. 2

pp. 803–812, 2015, doi: 10.1007/s00429-013-0684-6

[18] S. B. N. Thompson and M. Simonsen, “Yawning As a New Potential Diagnostic Marker

for Neurological Diseases,” J. Neurol. Neurosci., vol. 06, no. 03

pp. 6–11, 2015, doi: 10.21767/2171-6625.100022

[19] O. Walusinski, “Yawning in diseases,” Eur. Neurol., vol. 62, no. 3

pp. 180–187, 2009, doi: 10.1159/000228262.

[20] F. Y. Chang and C. L. Lu, “Hiccup: Mystery, nature and treatment,” J.

Neurogastroenterol. Motil., vol. 18, no. 2

pp. 123–130, 2012, doi: 10.5056/jnm.2012.18.2.123.

[21] M. Milders, S. Fuchs, and J. R. Crawford, “Neuropsychological impairments and changes

in emotional and social behaviour following severe traumatic brain injury,” J. Clin. Exp.

Neuropsychol., vol. 25, no. 2

pp. 157–172, 2003, doi: 10.1076/jcen.

[22] L. M. Shulman, “Emotional Traumatic Brain Injury,” Cogn. Behav. Neurol., vol. 33, no. 4

 pp. 301–303, 2020, doi: 10.1097/WNN.0000000000000243.

 [23] I. J. Baguley, M. T. Nott, S. Slewa-Younan, R. E. Heriseanu, and I. E. Perkes,

“Diagnosing Dysautonomia After Acute Traumatic Brain Injury: Evidence for

Overresponsiveness to Afferent Stimuli,” Arch. Phys. Med. Rehabil., vol. 90, no. 4

pp. 580–586, 2009, doi: 10.1016/j.apmr.2008.10.020.

[24] D. Esterov and B. D. Greenwald, “Autonomic dysfunction after mild traumatic brain injury,” Brain Sci., vol. 7, no. 8

pp. 1–8, 2017, doi: 10.3390/brainsci7080100.

[25] P. L. Hendén, S. Söndergaard, B. Rydenhag, B. Reinsfelt, S. E. Ricksten, and A. Åneman,

“Can baroreflex sensitivity and heart rate variability predict late neurological outcome in

patients with traumatic brain injury?,” J. Neurosurg. Anesthesiol., vol. 26, no. 1

pp. 50–59, 2014, doi: 10.1097/ANA.0b013e3182a47b62.

[26] D. G. Siedler, M. I. Chuah, M. T. K. Kirkcaldie, J. C. Vickers, and A. E. King, “Diffuse

axonal injury in brain trauma: Insights from alterations in neurofilaments,” Front. Cell.

Neurosci., vol. 8, no. DEC

pp. 1–10, 2014, doi: 10.3389/fncel.2014.00429.

[27] S. H. Jang, “Diagnostic problems in diffuse axonal injury,” Diagnostics, vol. 10, no. 2

pp. 1–10, 2020, doi: 10.3390/diagnostics10020117.

[28] A. R. Rabinowitz and D. H. Smith, “Genes , Environment and Alzheimer’s Disease

Chapter 9 - Traumatic Brain Injury and Rationale for a Neuropsychological Diagnosis of

Diffuse Axonal Injury,”

 pp. 2–3, 2022

bottom of page